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Dear Colleagues,

This is a very exciting time in the field of rheumatoid arthritis (RA). The more we understand 

about RA pathogenesis from basic and clinical research, the more equipped we are to 

understand this disease. We now know that cytokines play many key roles in the inflammation 

that drives RA. One such example is interleukin-6 (IL-6), a multifunctional cytokine that 

contributes to chronic inflammation in patients with RA.

Regeneron Pharmaceuticals and Sanofi Genzyme are excited to bring you additional educational 

material describing some of the fundamental immunology as well as clinical pathology we see 

in RA patients through a series of scientific monographs entitled The New and Evolving Science 

of IL-6 in Rheumatoid Arthritis. In the first installment, we reviewed the signaling mechanisms 

of IL-6 that allow it to have widespread effects in RA. In this second installment, we will 

focus on the contributions of the IL-6 pathway to bone resorption, both at the joint and more 

systemically, in RA. 

We hope you find this latest installment informative and engaging.

Sincerely,

Dr Calabrese and Dr Choy were provided honoraria by Sanofi Genzyme and Regeneron Pharmaceuticals.  
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Rheumatoid arthritis (RA) is a chronic, 
progressive autoimmune disease characterized 
by debilitating articular and systemic 
manifestations.1 Bone resorption represents 
both types of manifestations; reduced 
bone mineral density and focal erosions are 
commonly found at inflamed joints, but also 
occur systemically at distal locations. Articular 
bone resorption and cartilage degradation 
arising from the chronic synovitis associated 
with RA leads to structural damage that 
ultimately can impair function.2,3 Systemic bone 
loss contributes to the higher risk of fracture 
associated with RA.2 Patients with RA in the 
General Practice Research Database (>30,000 
RA patients) had a 1.5-fold increase in clinical 
fracture risk compared with control patients.4 
In addition, the FRAX® tool—which measures 
risk of fracture and was developed by the World 
Health Organization (WHO) based on population-
based cohorts—assigns an approximately 30% 
increase in risk of major osteoporotic fracture 
(hip, spine, wrist, humerus) and a 40% increased 
risk of hip fracture to patients with RA as a 
clinical risk factor.5,6

The skeleton is a dynamic organ in which 
mineralized bone is continuously resorbed 
by osteoclasts and new bone is formed by 
osteoblasts.7 This process, known as bone 
remodeling, is normally highly regulated to 
ensure bone homeostasis. In pathological 
conditions such as RA, this homeostasis is  
disrupted, resulting in uncoordinated osteoclast 
formation and a skewing towards bone resorption.7

It has been established that RA and other 
inflammatory diseases are driven by a complex 
network of cytokines, including tumor necrosis 
factor-α (TNF-α), interleukins (IL)-1, 4, 6, 12, 13, 
and 17, and interferons.1,8 IL-6 is a multifunctional 
cytokine that performs many diverse functions, 
including vital pro-inflammatory roles, in 
response to infection or injury.1,8,9 Persistently 
elevated IL-6 signaling may play a role in 
disrupting homeostasis in multiple physiologic 
processes, which can contribute to pathologic 
conditions observed in autoimmunity and 
chronic inflammation conditions such as RA.10,11 
Elevated IL-6 signaling plays an important role 
in RA, and may contribute to both articular and 
systemic manifestations of the disease.1,12-14 
IL-6 is one of the most abundant cytokines in 
the serum and synovial fluid of patients with RA, 
and correlates with both disease activity and 
articular destruction.1,15

The signaling features of IL-6 allow it to interact 
with a broad range of cells and tissues such 
as:  immune cells, fibroblast-like synoviocytes 
(FLS), hematopoietic stem cells, hepatocytes, 
adipocytes, endothelial cells, and pancreatic 
islets.8,16-20 IL-6 can signal through both a 
membrane-bound receptor and soluble 
receptor.1 The latter differentiates IL-6 signaling 
from other cytokines such as TNF-α and IL-1, 
which are also implicated in driving inflammation 
in RA.21,22 

This monograph will describe how the broad cell 
and tissue distribution of IL-6 signaling allows 
for its contributions to increased articular and 
systemic bone resorption.

Introduction
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Distinct patterns of bone remodeling are found 
in RA, which can be broadly categorized as 
periarticular osteopenia, focal joint erosions, 
and systemic osteoporosis.2 Periarticular 
osteopenia refers to reduced bone mineral 
density at the interface of bone and cartilage 
in diarthrodial joints such as the knee, wrist, 
and small joints of the hands and feet.23  
The presence of periarticular bone loss has been 
shown to have high predictive value with respect 
to the subsequent development of marginal joint 
erosions of the hand.23-25

Focal joint erosions are found at sites where the 
inflamed synovial lining, otherwise known as the 

pannus, comes in contact with the bone surface 
(Figure 1).2 These erosions are often localized to 
the joint margins, in which the bone is organized 
into a plate-like structure of compact cortical 
bone.2 However, protrusions of the pannus 
may also cause erosion in deeper subchondral 
regions, which are comprised of a network of 
cancellous trabecular bone.7 These subchondral 
regions of bone erosion may extend through 
the calcified cartilage that interfaces with 
bone.2 This provides the invading inflammatory 
tissue with access to the articular cartilage, 
allowing for degradation, and contributing to 
the joint space narrowing commonly seen in 
RA patients.26 Anatomical alterations leading 

Figure 1. Structure of normal and diarthrodial joints. 
Hypertrophic synovial tissue in RA releases mediators 
responsible for erosion of periarticular bone and 
degradation of cartilage. Osteoclasts erode the bone 
surface at the interface between the periarticular bone 
and RA synovium (inset). Figure adapted from Goldring 
SR et al. Bone. 2015. doi: 10.1016/j.bone.2015.05.024 
[Epub ahead of print].

Patterns of Pathologic Bone 
Remodeling Observed in RA



to interactions between the synovium and the 
bone marrow may facilitate the spreading of 
bone marrow inflammation (osteitis) commonly 
observed by magnetic resonance imaging (MRI) 
in patients with RA.27 Histological examination 
of biopsies from patients with RA and in vivo 
models of arthritis show that in both joint margin 
and subchondral cases, erosions are lined with 
resorption lacunae, or cavities, containing 
mono- and multinucleated cells with phenotypic 
features of osteoclasts.2,28,29 Interestingly, 
juxta-articular bone loss at sites removed from 
the inflamed synovium is common in RA, 
and frequently precedes the development 
of marginal joint erosions.2 The degree of 
generalized bone loss occurring early in the 
course of RA is also associated with 
disease activity.30

Systemic osteoporosis refers to the systemic 
reduced bone mineral density (BMD) associated 
with RA. The prevalence of BMD loss in the 
overall RA patient population has been reported 
as between 20% and 56%.31-35 Patients with RA 
who have reduced BMD are at an increased risk 
for fracture.31

Mechanisms of 
Bone Loss in RA
As mentioned, in RA there is a marked increase 
in proliferation, or hyperplasia, of cells of 
the synovial intimal lining, or pannus, which 
include FLS, osteoclasts, and macrophages. 
As a result, the lining increases from a depth 
of 1 to 2 cells to a depth of 10 to 20 cells.36 RA 
synovium induces local articular bone resorption 

through the production of proteins/molecules 
with the ability to recruit osteoclast precursors 
and induce their differentiation and activation 
into bone-resorbing osteoclasts.2,7 These include 
pro-inflammatory cytokines such as IL-6 and 
TNF-α, chemokines, and pro-osteoclastogenic 
soluble mediators such as macrophage colony-
stimulating factor (M-CSF).7 

Reciprocal signaling between osteoclasts and 
osteoblasts regulates the balance between 
bone generation and resorption, and is largely 
driven by two different proteins—RANKL 
and osteoprotegerin (OPG).2 Osteoclasts 
are generated from precursor cells that are 
usually of the monocyte-macrophage lineage.7 
Interactions between receptor activator of the 
nuclear factor kappa B (RANK) and its ligand 
(RANKL) are essential in osteoclastogenesis.2,7 
RANK on monocytes bind to RANKL, initiating 
osteoclast differentiation (Figure 2). Under 
physiological conditions, the main source of 
RANKL is osteoblasts.7 However, cells of the 
synovium, such as immune cells and FLS,  
are the main source of RANKL in pathological 
conditions such as RA (Figure 3).7 In addition, 
a recent study found that C-reactive protein 
(CRP) stimulated RANKL production in 
monocytes, and it induced osteoclast 
differentiation from monocytes and bone 
resorption in the absence of RANKL.37 OPG 
inhibits osteoclast function by binding 
directly to RANKL to block the RANKL-RANK 
interaction. By blocking this interaction, OPG 
attenuates osteoclast differentiation.

Anti-citrullinated protein antibodies (ACPAs) 
have been shown to be an independent 
predictor of the development of bone 
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erosions in patients with RA.38-41 ACPAs can 
be detected years before clinical disease 
onset of RA, suggesting a role in driving 
disease progression.42 Interestingly, a recent 
study found significant bone loss in healthy 
individuals with ACPA compared with patients 
who were negative for ACPA.43 The fact 
that bone damage was observed in these 
patients prior to any signs of inflammation 

provocatively suggests that autoantibodies 
may be directly involved in driving bone loss.44 
The other implication of these findings is 
that bone loss may be important for priming 
of the joint for susceptibility to chronic 
inflammation.44 Interestingly, the presence of 
ACPA in patients with RA seems to have little 
influence on disease activity.45 In contrast, 
the presence of the autoantibody rheumatoid 

Figure 2. Synovitis leads to increased bone resorption and decreased bone formation. 
Proinflammatory cytokines produced in the synovium induce osteoclastogenesis 
largely through increasing expression of RANKL. In addition, proinflammatory cytokines 
reduce bone formation by inhibiting osteoblast differentiation through increasing the 
expression of Dkk-1 by synovial fibroblasts. Dkk-1 in turn induces osteocytes to express 
sclerostin, which is also an inhibitor of osteoblast differentiation. Figure adapted from 
Schett G, Gravallese E. Nat Rev Rheumatol. 2012;8:656-664.

Figure 3. RANKL is 
aberrantly expressed in RA.
Monocytes are largely 
differentiated into mature 
osteoclasts through RANKL 
binding. Under normal 
conditions, osteoblasts are 
the predominate source 
of RANKL. In RA and other 
pathologic condtions, 
RANKL is expressed by a 
variety of cell  types which 
normally do not, under 
physiologic condtions. 
Figure adapted from Jung 
SM et al.  J  Immunol Res . 
2014;2014:263625.
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factor (RF) does appear to be associated 
with higher disease activity, but there exists 
disagreement on its role in joint erosion.40,41,46

These findings raise the question of how 
ACPA protein antibodies trigger bone loss. 
It has been proposed that ACPAs bind 
directly to citrullinated vimentin expressed 
on the surface of cells of osteoclast cell 
lineage (Figure 4).47 These interactions can 
then stimulate osteoclast precursors to 
differentiate into mature active osteoclasts 
which lead to increased bone resorption.47  
A recent study by Hecht et al demonstrates 

that rheumatoid factor may cooperate with 
ACPAs to enhance bone erosion.40

Another pathological underpinning of bone 
resorption in RA is the virtual absence of 
bone repair in articular focal erosions.2 
This appears to arise through production 
of Dickkopf-1 (DKK-1)—the inhibitor of the 
wingless (Wnt)-signaling pathway that plays 
a critical role in osteoblast-mediated bone 
formation—by cells of the synovial lining.48 
Synovial fibroblasts, endothelial cells, and 
chondrocytes all express DKK-1.2

Figure 4. Autoantibodies can directly impact bone resorption.
Autoantibodies produced by plasma cells can bind to citrullinated vimentin on the surface of osteoclast precursors, which stimulates them 
to undergo differentiation. Osteoclast differentiation is also facilitated by proinflammatory cytokines which cause T cells and synovial 
fibroblasts to express RANKL and M-CSF. Figure adapted from Kleyer A, Schett G. Curr Opin Rheumatol. 2014;26:80-84.



Effect on Bone Metabolism Supported By

With sIL-6R, induces expression of RANKL on osteoblasts, leading to 
osteoclast differentiation53 In vitro mouse cell culture model

In the presence of sIL-6R, induces expression on FLS54 In vitro human cell culture model

Enhances Th17 cell differentiation to secrete IL-17,55,56 which stimulates 
osteoclastogenesis57 In vitro mouse cell culture model

Supports RANKL-independent osteoclast formation58 In vitro mouse cell culture model

In prepubertal mice, enhances osteoclastogenesis49 Transgenic mice overexpressing IL-6

Important for maintaining 3-D trabecular microarchitecture49 Transgenic mice overexpressing IL-6

Induces CRP expression in hepatocytes,59 leading to increased RANKL 
expression and increased osteoclast differentiation37

In vitro human cell culture model
In vivo studies correlating IL-6 and CRP levels in RA patients

Induces differentiation of B cells into plasma cells60 that secrete 
Dickkopf-related protein 1 (DKK-1), which inhibits osteoblast formation48 Mouse models and in vitro mouse cell culture model

With sIL-6R, directly inhibits osteoblast differentiation61 In vitro mouse cell culture model

Protects against ovariectomy-induced bone loss52 IL-6 knockout mouse model

Enhances osteoblast differentiation in vitro62,63 In vitro mouse and human cell culture model

In the absence of other support cells, IL-6 by itself directly suppresses the 
differentiation and facilitates the proliferation of osteoclast progenitors64 In vitro mouse cell culture model

Suppresses TNF-α-induced expression of Dkk-1 by FLS65 In vitro human cell culture model

Pro-inflammatory cytokines like TNF-α, 
interleukin (IL)-1, IL-6 and IL-17, are effective 
triggers of osteoclast differentiation 
and bone resorption. Inflammatory 
cytokines either directly trigger osteoclast 
differentiation or support it indirectly by 
increasing the expression of RANKL.7,48

Studies in mice demonstrate a 
role for IL-6 in bone resorption 

A number of genetic studies in mice have 
demonstrated a role for IL-6 in bone 
metabolism (Table 1). Transgenic mice 
engineered to overexpress IL-6 showed 
increases in osteoclast number and activity 

leading to impaired skeletal growth at 
the prepubertal stage but decreased 
osteoclast formation at the adult stage.49,50 
A significant reduction of 3-D trabecular 
microarchitecture was also observed in 
these transgenic animals.49 IL-6 knockout 
mice with experimental arthritis showed 
significantly decreased osteoclastogenic 
activity and impaired osteoclast recruitment 
to inflammatory sites.51 Under physiological 
conditions, IL-6 deficiency resulted in no 
detectable change in osteoclast number.52 
However, IL-6 knockout mice were protected 
against ovariectomy-induced bone loss.52 

Contributions of IL-6 to 
Bone Remodeling 

Table 1. Contributions of IL-6 to Bone Metabolism
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Molecular mechanisms 
governing bone resorption 
mediated by IL-6 

Roles for IL-6 in promoting both bone 
resorption and formation have also been 
demonstrated in a number of in vitro studies 
(Table 1). These apparently opposing functions 
may be explained from differences in the 
cell types and experimental conditions used 
across the in vitro studies. In vivo, complex 
cytokine networks exist, with multiple 
interconnected signaling pathways.66 IL-6 
affects a broad range of cells and can alter 
the expression of other important mediators 
of bone metabolism such as IL-1 and TNF-α. 
In the context of chronic inflammation states 
like that found in RA, elevated levels of these 
cytokines likely conspire to increase bone 
resorption.

It has been proposed that IL-6 signaling 
components determine whether bone 
resorption or formation activities of IL-6 are 
more heavily weighted, and when elevated, 
can shift the balance from bone formation to 
resorption.64 Under steady-state conditions, 
IL-6 is proposed to suppress osteoclast 
function, and therefore prevent bone 
resorption.64 However, under inflammatory 
conditions, increased expression of the soluble 
IL-6 receptor is thought to induce expression 
of RANKL on osteoblasts and fibroblasts, 
leading to increased osteoclast activation 
and proliferation, and ultimately greater bone 
resorption.64

Effects of elevated 
IL-6 signaling on bone 
metabolism in RA

In the clinical evaluation of synovial fluid from 
patients with RA, it was determined that the 
ratio of RANKL to OPG reflects osteoclast 
function, and a higher ratio of RANKL to OPG 
is correlated to osteoclast hyperactivity and 
bone resorption in joints in patients with RA.67

Elevated IL-6 levels are associated with 
generalized bone mineral density loss. 31,68,69 
The prevalence of BMD loss in the overall 
RA patient population has been reported as 
between 19.6% and 56%.31-35 The disruption of 
homeostasis caused by elevated IL-6 signaling, 
and the resultant increase in bone resorption, 
can lead to overall BMD loss, bone weakening, 
cartilage destruction, and an increased 
susceptibility to fracture.49

BMD loss is especially prevalent in 
postmenopausal women with RA; generalized 
BMD loss occurs in >50% of this population 
compared with ~15% in postmenopausal 
women without RA.31,70 Studies have shown 
that estrogen blocks the synthesis of IL-6 
by bone-forming osteoblasts and may also 
interfere with expression of IL-6 receptors. 
The serum level of sIL-6R correlates with BMD 
loss in postmenopausal women who have RA.68 
Elevated serum levels of sIL-6R have also been 
shown to be the main predictor of BMD loss 
in a study of postmenopausal women with 
RA, independent of well-known risk factors 
of generalized bone loss such as age, disease 
duration, low body mass index, and cumulative 
glucocorticoid dose.68



Conclusions
The chronic synovitis associated with RA can 
ultimately lead to disruption of the integrity 
and functional properties of joint tissues.2 
Progressive bone loss also occurs systemically 
in RA, and it is associated with an increased 
risk of fractures.2 In RA, the balance of bone 
formation and resorption is skewed in favor 
of resorption, through increases in the 
number and activity of osteoclasts relative to 
osteoblasts.2,7 The inflamed synovium acts as 
a reservoir in RA; it provides the environment 
for the immune cells and cytokines that 
enhance osteoclastogenesis.2,7 These cells 
and cytokines can upregulate expression of 
RANKL directly, or indirectly by stimulating 
release of proinflammatory cytokines that 
also influence RANKL expression.2,7 IL-6 can 
stimulate expression of RANKL in a broad 
array of cells such as osteoblasts and FLS.53,54 
IL-6 also enhances osteoclast activity through 
other indirect mechanisms including affecting 
expression of other cytokines involved in 
mediating joint damage.37,55,56,58 Continued 
research on the many functions of IL-6 may 
further delineate the pathological origins and 
underpinnings of bone loss in RA.
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